• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Homological Mirror Symmetry and Tropical Geometry » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2053325]
• Literatura piękna
 [1402461]

  więcej...
• Turystyka
 [64130]
• Informatyka
 [134835]
• Komiksy
 [23419]
• Encyklopedie
 [22366]
• Dziecięca
 [444190]
• Hobby
 [91059]
• AudioBooki
 [6736]
• Literatura faktu
 [207163]
• Muzyka CD
 [7310]
• Słowniki
 [2030]
• Inne
 [485631]
• Kalendarze
 [433]
• Podręczniki
 [90801]
• Poradniki
 [410090]
• Religia
 [388873]
• Czasopisma
 [488]
• Sport
 [50358]
• Sztuka
 [174110]
• CD, DVD, Video
 [716]
• Technologie
 [141359]
• Zdrowie
 [77945]
• Książkowe Klimaty
 [60]
• Puzzle, gry
 [2367]
• Large Print
 [22060]
Kategorie szczegółowe BISAC

Homological Mirror Symmetry and Tropical Geometry

ISBN-13: 9783319065137 / Angielski / Miękka / 2014 / 436 str.

Ricardo Castano-Bernard; Fabrizio Catanese; Maxim Kontsevich
Homological Mirror Symmetry and Tropical Geometry Ricardo Castano-Bernard Fabrizio Catanese Maxim Kontsevich 9783319065137 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

    

Homological Mirror Symmetry and Tropical Geometry

ISBN-13: 9783319065137 / Angielski / Miękka / 2014 / 436 str.

Ricardo Castano-Bernard; Fabrizio Catanese; Maxim Kontsevich
cena 421,22 zł
(netto: 401,16 VAT:  5%)
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the "tropical" approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as "degenerations" of the corresponding algebro-geometric objects.

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometria - Algebraiczna
Mathematics > Geometry - Differential
Wydawca:
Springer
Seria wydawnicza:
Lecture Notes Of The Unione Matematica Italiana
Język:
Angielski
ISBN-13:
9783319065137
Rok wydania:
2014
Wydanie:
2014
Numer serii:
000335018
Ilość stron:
436
Waga:
0.62 kg
Wymiary:
23.39 x 15.6 x 2.31
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Oren Ben-Bassat and Elizabeth Gasparim: Moduli Stacks of Bundles on Local Surfaces.- David Favero, Fabian Haiden and Ludmil Katzarkov: An orbit construction of phantoms, Orlov spectra and Knörrer Periodicity.- Stéphane Guillermou and Pierre Schapira: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem.- Sergei Gukov and Piotr Sułkowski: A-polynomial, B-model and Quantization.- M. Kapranov, O. Schiffmann, E. Vasserot: Spherical Hall Algebra of Spec(Z).- Maxim Kontsevich and Yan Soibelman: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror Symmetry.- Grigory Mikhalkin and Ilia Zharkov: Tropical eigen wave and intermediate Jacobians.- Andrew Neitzke: Notes on a new construction of hyperkahler metrics.- Helge Ruddat: Mirror duality of Landau-Ginzburg models via Discrete Legendre Transforms.- Nicolo Sibilla: Mirror Symmetry in dimension one and Fourier-Mukai transforms.- Alexander Soibelman: The very good property for moduli of parabolic bundles and the additive Deligne-Simpson problem.

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool.
Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.



Udostępnij

Facebook - konto krainaksiazek.pl
Opinie o Krainaksiazek.pl na Opineo.pl
Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2022 DolnySlask.com Agencja Internetowa

© 1997-2021 DolnySlask.com Agencja Internetowa
Wtyczki do przeglądarki Firefox i IE:
Autor | ISBN13 | Tytuł
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia