• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

A Derivative-Free Two Level Random Search Method for Unconstrained Optimization » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2061955]
• Literatura piękna
 [1413136]

  więcej...
• Turystyka
 [64459]
• Informatyka
 [134907]
• Komiksy
 [24486]
• Encyklopedie
 [22442]
• Dziecięca
 [460906]
• Hobby
 [93053]
• AudioBooki
 [6817]
• Literatura faktu
 [209725]
• Muzyka CD
 [7362]
• Słowniki
 [2081]
• Inne
 [493990]
• Kalendarze
 [368]
• Podręczniki
 [91260]
• Poradniki
 [412125]
• Religia
 [390058]
• Czasopisma
 [497]
• Sport
 [51206]
• Sztuka
 [176555]
• CD, DVD, Video
 [767]
• Technologie
 [141734]
• Zdrowie
 [78703]
• Książkowe Klimaty
 [60]
• Puzzle, gry
 [2359]
• Large Print
 [22093]
Kategorie szczegółowe BISAC

A Derivative-Free Two Level Random Search Method for Unconstrained Optimization

ISBN-13: 9783030685164 / Angielski / Miękka / 2021 / 118 str.

Neculai Andrei
A Derivative-Free Two Level Random Search Method for Unconstrained Optimization Neculai Andrei 9783030685164 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

    

A Derivative-Free Two Level Random Search Method for Unconstrained Optimization

ISBN-13: 9783030685164 / Angielski / Miękka / 2021 / 118 str.

Neculai Andrei
cena 231,65 zł
(netto: 220,62 VAT:  5%)
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust.

Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities.

There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka stosowana
Business & Economics > Operations Research
Wydawca:
Springer
Seria wydawnicza:
Springerbriefs in Optimization
Język:
Angielski
ISBN-13:
9783030685164
Rok wydania:
2021
Wydanie:
2021
Numer serii:
000459570
Ilość stron:
118
Waga:
0.19 kg
Wymiary:
23.39 x 15.6 x 0.71
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

1. Introduction.- 2. A Derivative-free Two Level Random Search Method for Unconstrained Optimization.- 3. Convergence of the Algorithm.- 4. Numerical Results.- 5. Conclusions.- Annex A. List of Applications.- Annex B. List of Test Functions.- Annex C. Detailed Results for 30 Large-Scale Problems.- Annex D. Detailed Results for 140 Problems.

Neculai Andrei holds a position at the Center for Advanced Modeling and Optimization at the Academy of Romanian Scientists in Bucharest, Romania. Dr. Andrei’s areas of interest include mathematical modeling, linear programming, nonlinear optimization, high performance computing, and numerical methods in mathematical programming. In addition to this present volume, Neculai Andrei has published several books with Springer including Nonlinear Conjugate Gradient Methods for Unconstrained Optimization (2020), Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology (2017), and Nonlinear Optimization Applications Using the GAMS Technology (2013).

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust.

Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities.

There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.



Udostępnij

Facebook - konto krainaksiazek.pl
Opinie o Krainaksiazek.pl na Opineo.pl
Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2022 DolnySlask.com Agencja Internetowa

© 1997-2021 DolnySlask.com Agencja Internetowa
Wtyczki do przeglądarki Firefox i IE:
Autor | ISBN13 | Tytuł
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia